Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Structural characteristics of Mg-doped (I-x)(K0.5Na0.5)NbO3-xLiSbO3 lead-free ceramics as revealed by Raman spectroscopy

Identifieur interne : 000707 ( Chine/Analysis ); précédent : 000706; suivant : 000708

Structural characteristics of Mg-doped (I-x)(K0.5Na0.5)NbO3-xLiSbO3 lead-free ceramics as revealed by Raman spectroscopy

Auteurs : RBID : Pascal:12-0053025

Descripteurs français

English descriptors

Abstract

This paper presents a Raman spectroscopic study of compositional-change-induced structure variation and of the related mechanism of Mg doping in LiSbO3 (LS)-modified (K0.5Na0.5)NbO3 (KNN) ceramics. With increasing LS content from 0 to 0.06, a discontinuous shift towards higher wavenumbers was found for the band position of the A1g(v1) stretching mode of KNN, accompanied by a clearly nonlinear broadening of this band and a decrease in its intensity. Such morphological changes in the Raman spectrum result from two factors: (i) changes in polarizability/binding strength of the O-Nb-O vibration upon incorporation of Li ions in the KNN perovskitic structure and (ii) a polymorphic phase transition (PPT) from orthorhombic to tetragonal (O → T) phase at x > 0.04. Upon increasing the amount, w, of Mg dopant incorporated into the (1-x)KNN-xLS ceramic structure, the intensity of the Raman bands are enhanced, while the peak position and the full width at half maximum of the A1g(v1) mode was found to experience a clear dependence on both w and x. Raman characterization revealed that the mechanism of Mg doping is strongly correlated with the concentration of Li in the perovskite structure: Mg2+ ions will preferentially replace Li+ ions for low Mg doping while replace K/Na ions for higher doping of Mg. The PPT O → T was also found to be altered by the introduction of Mg and the critical value of LS concentration, xO-T, for incipient O → T transition in the KNN-xLS-wMT system was strongly dependent on Mg content, with xO→T being roughly equal to 0.04 + 2w, for the case of dilute Mg alloying.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:12-0053025

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Structural characteristics of Mg-doped (I-x)(K
<sub>0.5</sub>
Na
<sub>0.5</sub>
)NbO
<sub>3-x</sub>
LiSbO
<sub>3</sub>
lead-free ceramics as revealed by Raman spectroscopy</title>
<author>
<name sortKey="Zhu, W L" uniqKey="Zhu W">W. L. Zhu</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Ceramic Physics Laboratory and Research Institute for Nanoscience, RIN, Kyoto Institute of Technology, Sakyo-ku</s1>
<s2>Matsugasaki, 606-8585 Kyoto</s2>
<s3>JPN</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>9 aut.</sZ>
</inist:fA14>
<country>Japon</country>
<wicri:noRegion>Matsugasaki, 606-8585 Kyoto</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Zhu, J L" uniqKey="Zhu J">J. L. Zhu</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Department of Materials Science, Sichuan University</s1>
<s2>610064 Chengdu</s2>
<s3>CHN</s3>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<wicri:noRegion>610064 Chengdu</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Meng, Y" uniqKey="Meng Y">Y. Meng</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Ceramic Physics Laboratory and Research Institute for Nanoscience, RIN, Kyoto Institute of Technology, Sakyo-ku</s1>
<s2>Matsugasaki, 606-8585 Kyoto</s2>
<s3>JPN</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>9 aut.</sZ>
</inist:fA14>
<country>Japon</country>
<wicri:noRegion>Matsugasaki, 606-8585 Kyoto</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Wang, M S" uniqKey="Wang M">M. S. Wang</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Department of Materials Science, Sichuan University</s1>
<s2>610064 Chengdu</s2>
<s3>CHN</s3>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<wicri:noRegion>610064 Chengdu</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Zhu, B" uniqKey="Zhu B">B. Zhu</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Department of Materials Science, Sichuan University</s1>
<s2>610064 Chengdu</s2>
<s3>CHN</s3>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<wicri:noRegion>610064 Chengdu</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Zhu, X H" uniqKey="Zhu X">X. H. Zhu</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Department of Materials Science, Sichuan University</s1>
<s2>610064 Chengdu</s2>
<s3>CHN</s3>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<wicri:noRegion>610064 Chengdu</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Zhu, J G" uniqKey="Zhu J">J. G. Zhu</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Department of Materials Science, Sichuan University</s1>
<s2>610064 Chengdu</s2>
<s3>CHN</s3>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<wicri:noRegion>610064 Chengdu</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Xiao, D Q" uniqKey="Xiao D">D. Q. Xiao</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Department of Materials Science, Sichuan University</s1>
<s2>610064 Chengdu</s2>
<s3>CHN</s3>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<wicri:noRegion>610064 Chengdu</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Pezzotti, G" uniqKey="Pezzotti G">G. Pezzotti</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Ceramic Physics Laboratory and Research Institute for Nanoscience, RIN, Kyoto Institute of Technology, Sakyo-ku</s1>
<s2>Matsugasaki, 606-8585 Kyoto</s2>
<s3>JPN</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>9 aut.</sZ>
</inist:fA14>
<country>Japon</country>
<wicri:noRegion>Matsugasaki, 606-8585 Kyoto</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">12-0053025</idno>
<date when="2011">2011</date>
<idno type="stanalyst">PASCAL 12-0053025 INIST</idno>
<idno type="RBID">Pascal:12-0053025</idno>
<idno type="wicri:Area/Main/Corpus">002340</idno>
<idno type="wicri:Area/Main/Repository">002489</idno>
<idno type="wicri:Area/Chine/Extraction">000707</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">0022-3727</idno>
<title level="j" type="abbreviated">J. phys., D. Appl. phys. : (Print)</title>
<title level="j" type="main">Journal of physics. D, Applied physics : (Print)</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Binary systems</term>
<term>Doping</term>
<term>Impurity density</term>
<term>Indium additions</term>
<term>Lead free ceramics</term>
<term>Lithium Antimonates</term>
<term>Magnesium additions</term>
<term>Morphological changes</term>
<term>Non linear effect</term>
<term>Orthorhombic lattices</term>
<term>Perovskites</term>
<term>Polymorphism</term>
<term>Potassium Sodium Niobates Mixed</term>
<term>Raman spectra</term>
<term>Strong correlation</term>
<term>Tetragonal lattices</term>
<term>Vibrational modes</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Dopage</term>
<term>Spectre Raman</term>
<term>Addition indium</term>
<term>Mode vibration</term>
<term>Effet non linéaire</term>
<term>Changement morphologique</term>
<term>Concentration impureté</term>
<term>Polymorphisme</term>
<term>Corrélation forte</term>
<term>Addition magnésium</term>
<term>Potassium Sodium Niobate Mixte</term>
<term>Système binaire</term>
<term>Lithium Antimoniate</term>
<term>Perovskites</term>
<term>Réseau orthorhombique</term>
<term>Réseau quadratique</term>
<term>Céramique sans plomb</term>
</keywords>
<keywords scheme="Wicri" type="concept" xml:lang="fr">
<term>Dopage</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">This paper presents a Raman spectroscopic study of compositional-change-induced structure variation and of the related mechanism of Mg doping in LiSbO3 (LS)-modified (K0.5Na0.5)NbO3 (KNN) ceramics. With increasing LS content from 0 to 0.06, a discontinuous shift towards higher wavenumbers was found for the band position of the A1g(v1) stretching mode of KNN, accompanied by a clearly nonlinear broadening of this band and a decrease in its intensity. Such morphological changes in the Raman spectrum result from two factors: (i) changes in polarizability/binding strength of the O-Nb-O vibration upon incorporation of Li ions in the KNN perovskitic structure and (ii) a polymorphic phase transition (PPT) from orthorhombic to tetragonal (O → T) phase at x > 0.04. Upon increasing the amount, w, of Mg dopant incorporated into the (1-x)KNN-xLS ceramic structure, the intensity of the Raman bands are enhanced, while the peak position and the full width at half maximum of the A1g(v1) mode was found to experience a clear dependence on both w and x. Raman characterization revealed that the mechanism of Mg doping is strongly correlated with the concentration of Li in the perovskite structure: Mg2+ ions will preferentially replace Li+ ions for low Mg doping while replace K/Na ions for higher doping of Mg. The PPT O → T was also found to be altered by the introduction of Mg and the critical value of LS concentration, xO-T, for incipient O → T transition in the KNN-xLS-wMT system was strongly dependent on Mg content, with xO→T being roughly equal to 0.04 + 2w, for the case of dilute Mg alloying.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0022-3727</s0>
</fA01>
<fA02 i1="01">
<s0>JPAPBE</s0>
</fA02>
<fA03 i2="1">
<s0>J. phys., D. Appl. phys. : (Print)</s0>
</fA03>
<fA05>
<s2>44</s2>
</fA05>
<fA06>
<s2>50</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Structural characteristics of Mg-doped (I-x)(K
<sub>0.5</sub>
Na
<sub>0.5</sub>
)NbO
<sub>3-x</sub>
LiSbO
<sub>3</sub>
lead-free ceramics as revealed by Raman spectroscopy</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>ZHU (W. L.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>ZHU (J. L.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>MENG (Y.)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>WANG (M. S.)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>ZHU (B.)</s1>
</fA11>
<fA11 i1="06" i2="1">
<s1>ZHU (X. H.)</s1>
</fA11>
<fA11 i1="07" i2="1">
<s1>ZHU (J. G.)</s1>
</fA11>
<fA11 i1="08" i2="1">
<s1>XIAO (D. Q.)</s1>
</fA11>
<fA11 i1="09" i2="1">
<s1>PEZZOTTI (G.)</s1>
</fA11>
<fA14 i1="01">
<s1>Ceramic Physics Laboratory and Research Institute for Nanoscience, RIN, Kyoto Institute of Technology, Sakyo-ku</s1>
<s2>Matsugasaki, 606-8585 Kyoto</s2>
<s3>JPN</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>9 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Department of Materials Science, Sichuan University</s1>
<s2>610064 Chengdu</s2>
<s3>CHN</s3>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</fA14>
<fA20>
<s2>505303.1-505303.8</s2>
</fA20>
<fA21>
<s1>2011</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>5841</s2>
<s5>354000505994490110</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2012 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>32 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>12-0053025</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Journal of physics. D, Applied physics : (Print)</s0>
</fA64>
<fA66 i1="01">
<s0>GBR</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>This paper presents a Raman spectroscopic study of compositional-change-induced structure variation and of the related mechanism of Mg doping in LiSbO3 (LS)-modified (K0.5Na0.5)NbO3 (KNN) ceramics. With increasing LS content from 0 to 0.06, a discontinuous shift towards higher wavenumbers was found for the band position of the A1g(v1) stretching mode of KNN, accompanied by a clearly nonlinear broadening of this band and a decrease in its intensity. Such morphological changes in the Raman spectrum result from two factors: (i) changes in polarizability/binding strength of the O-Nb-O vibration upon incorporation of Li ions in the KNN perovskitic structure and (ii) a polymorphic phase transition (PPT) from orthorhombic to tetragonal (O → T) phase at x > 0.04. Upon increasing the amount, w, of Mg dopant incorporated into the (1-x)KNN-xLS ceramic structure, the intensity of the Raman bands are enhanced, while the peak position and the full width at half maximum of the A1g(v1) mode was found to experience a clear dependence on both w and x. Raman characterization revealed that the mechanism of Mg doping is strongly correlated with the concentration of Li in the perovskite structure: Mg2+ ions will preferentially replace Li+ ions for low Mg doping while replace K/Na ions for higher doping of Mg. The PPT O → T was also found to be altered by the introduction of Mg and the critical value of LS concentration, xO-T, for incipient O → T transition in the KNN-xLS-wMT system was strongly dependent on Mg content, with xO→T being roughly equal to 0.04 + 2w, for the case of dilute Mg alloying.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001B60C20D</s0>
</fC02>
<fC02 i1="02" i2="3">
<s0>001B60D70K</s0>
</fC02>
<fC02 i1="03" i2="3">
<s0>001B70G84D</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Dopage</s0>
<s5>02</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Doping</s0>
<s5>02</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Doping</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="3" l="FRE">
<s0>Spectre Raman</s0>
<s5>03</s5>
</fC03>
<fC03 i1="02" i2="3" l="ENG">
<s0>Raman spectra</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="3" l="FRE">
<s0>Addition indium</s0>
<s5>04</s5>
</fC03>
<fC03 i1="03" i2="3" l="ENG">
<s0>Indium additions</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="3" l="FRE">
<s0>Mode vibration</s0>
<s5>05</s5>
</fC03>
<fC03 i1="04" i2="3" l="ENG">
<s0>Vibrational modes</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Effet non linéaire</s0>
<s5>06</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Non linear effect</s0>
<s5>06</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Efecto no lineal</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="3" l="FRE">
<s0>Changement morphologique</s0>
<s5>07</s5>
</fC03>
<fC03 i1="06" i2="3" l="ENG">
<s0>Morphological changes</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Concentration impureté</s0>
<s5>08</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Impurity density</s0>
<s5>08</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Concentración impureza</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="3" l="FRE">
<s0>Polymorphisme</s0>
<s5>09</s5>
</fC03>
<fC03 i1="08" i2="3" l="ENG">
<s0>Polymorphism</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="3" l="FRE">
<s0>Corrélation forte</s0>
<s5>10</s5>
</fC03>
<fC03 i1="09" i2="3" l="ENG">
<s0>Strong correlation</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="3" l="FRE">
<s0>Addition magnésium</s0>
<s5>13</s5>
</fC03>
<fC03 i1="10" i2="3" l="ENG">
<s0>Magnesium additions</s0>
<s5>13</s5>
</fC03>
<fC03 i1="11" i2="X" l="FRE">
<s0>Potassium Sodium Niobate Mixte</s0>
<s2>NC</s2>
<s2>NA</s2>
<s5>15</s5>
</fC03>
<fC03 i1="11" i2="X" l="ENG">
<s0>Potassium Sodium Niobates Mixed</s0>
<s2>NC</s2>
<s2>NA</s2>
<s5>15</s5>
</fC03>
<fC03 i1="11" i2="X" l="SPA">
<s0>Mixto</s0>
<s2>NC</s2>
<s2>NA</s2>
<s5>15</s5>
</fC03>
<fC03 i1="12" i2="3" l="FRE">
<s0>Système binaire</s0>
<s5>16</s5>
</fC03>
<fC03 i1="12" i2="3" l="ENG">
<s0>Binary systems</s0>
<s5>16</s5>
</fC03>
<fC03 i1="13" i2="3" l="FRE">
<s0>Lithium Antimoniate</s0>
<s2>NC</s2>
<s2>NA</s2>
<s5>17</s5>
</fC03>
<fC03 i1="13" i2="3" l="ENG">
<s0>Lithium Antimonates</s0>
<s2>NC</s2>
<s2>NA</s2>
<s5>17</s5>
</fC03>
<fC03 i1="14" i2="3" l="FRE">
<s0>Perovskites</s0>
<s5>18</s5>
</fC03>
<fC03 i1="14" i2="3" l="ENG">
<s0>Perovskites</s0>
<s5>18</s5>
</fC03>
<fC03 i1="15" i2="3" l="FRE">
<s0>Réseau orthorhombique</s0>
<s5>19</s5>
</fC03>
<fC03 i1="15" i2="3" l="ENG">
<s0>Orthorhombic lattices</s0>
<s5>19</s5>
</fC03>
<fC03 i1="16" i2="3" l="FRE">
<s0>Réseau quadratique</s0>
<s5>20</s5>
</fC03>
<fC03 i1="16" i2="3" l="ENG">
<s0>Tetragonal lattices</s0>
<s5>20</s5>
</fC03>
<fC03 i1="17" i2="3" l="FRE">
<s0>Céramique sans plomb</s0>
<s4>CD</s4>
<s5>96</s5>
</fC03>
<fC03 i1="17" i2="3" l="ENG">
<s0>Lead free ceramics</s0>
<s4>CD</s4>
<s5>96</s5>
</fC03>
<fN21>
<s1>030</s1>
</fN21>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Chine/Analysis
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000707 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Chine/Analysis/biblio.hfd -nk 000707 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Chine
   |étape=   Analysis
   |type=    RBID
   |clé=     Pascal:12-0053025
   |texte=   Structural characteristics of Mg-doped (I-x)(K0.5Na0.5)NbO3-xLiSbO3 lead-free ceramics as revealed by Raman spectroscopy
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024